莫卡看书

首页 足迹
字:
背景色: 关灯 护眼
首页 > 从小镇学霸到首席科学家 > 第324章 白衣怒马少年时,数登绝顶易为峰!

第324章 白衣怒马少年时,数登绝顶易为峰!(2 / 4)

这是数学文化!

这是数学传承!

这是数学的神圣与庄严!

当空中的视屏播放完毕之后,周易的论文很快就缓缓的浮现了出来。

“从论文发表至今,已经过去了一个多月,相信很多的朋友都已经阅读完毕,并且有着深厚的理解,

所以一些简单的基础的问题我们在这里不再赘述。”縂

周易的声音洪亮,不急不慢的说道,仿佛在叙述一件微不足道的小事情。

此刻台下针落可闻,寂静无比。

所有的人都在侧耳倾听,生怕错过某一点细节导致听不懂后面的内容,跟不上进度。

“我们也许可以用galois上同调的语言给出一个新的定义selmer群。”

【sel_k(q_p/z_p):=ker{h^1(k,qp/zp)→n_v(h^1(k_v,q_p/z_p)/(h^1)_f(k_v,q_p/z_p))}。】

周易话音刚落,空中就浮现出了这几行蓝色的光幕。

无数人看得是一清二楚。縂

“这里v跑遍所有k的素理想;h^1是一阶galois上同调;q_p/z_p上的galois群作用定义为平凡作用

定义

(h^1)_f(k,q_p/z_p):=ker{h^1(k_v,q_p/z_p)→h^1(i_v,q_p/z_p)},”

其中i_v为v的惰性子群。

根据类域论的基本定理,容易看出上述定义的selmer群典则同构于理想类群的p-部分的对偶。

在全息技术的辅助下,周易不急不慢的坐在讲台上说着,

甚至都不需要动手指,十分的怡然自得。縂

前面部分是selmer群,是当初田野以及其合伙人的部分内容,这里被周易给引用,

周易缓缓叙述,不急不慢,与以前还要在白板上写不一样,

在白板上写板书十分的累,一行行的公式与计算步骤十分多,

就算是各自精简也会写很多个白板,

全息技术的好处就在于周易不需要写,只需要动动嘴就行了。

...縂

“随后我们引用iwasawa理论,iwasawa理论是研究l-函数与selmer群之间关系在pro-p的域扩张塔下,或者更一般地,在p进族下的性质。”

“接下来,便是我们论证的核心部分,前面的内容简单易懂,

接下来就是周氏解析法的变种应用!以及与几何之间的联系!”

周氏解析法在数论的领域应用好比于当初的圆法与筛法,

是目前数论方向最为趁手的工具。

要是现在有人研究数论还不会周氏解析法,那么基本就是一个不入流的数学家。

甚至不能称之为数学家。縂

代数与几何与数论,三个方向将会在这篇论文之中得到一个加强的联系。

周易在台上讲得滔滔不绝,语速十分的快,台下徐城阳对着张伟问道:

“老张,你可是研究bsd猜想的,现在情况如何?”

张伟没有理会徐城阳,而是等到周易停止喝水的间隙才有空说道:

“当初我没看懂的地方,现在已经明白了,周院士的论证大概率是对的。

而且越到后面我越吃力。”

恽之维感叹道:縂

“老张,你当初在一些前提条件下部分证明了kolyvaginconjecture,同时利用eisensteinseries的理论以及level-raisingofmodularforms的方法证明了不少的结论,

现在竟然有些隐隐听不懂!?”

张伟有些尴尬,道:

“我又不是神,神在上面给我们讲座呢。”

热门推荐